Аналіз змісту і методів вивчення елементів стереометрії у курсі геометрії 9 класу за новими підручниками з геометрії

Педагогіка: історія і сьогодення » Вивчення елементів стереометрії у курсі геометрії 9 класу » Аналіз змісту і методів вивчення елементів стереометрії у курсі геометрії 9 класу за новими підручниками з геометрії

Сторінка 2

Особливістю розділу є прикладна спрямованість змісту. Автори намагалися, де це можливо, не лише показати виникнення геометричного факту із практичної ситуації, а й проілюструвати застосування його на практиці. З цією метою в окремо виділеному блоці завдань «Застосуйте на практиці» подано типові практичні ситуації, де потрібно застосувати вивчений матеріал.

У підручнику «Геометрія, 9» А.П.Єршової, В.В. Голобородько, О.Ф. Крижановського, С.В.Єршова зазначено, що цей розділ «своєрідний стислий огляд курсу геометрії 10–12 класів». Тема «Початкові відомості зі стереометрії» передбачає ознайомлення учнів з фігурами в просторі і є пропедевтичним вступом до курсу стереометрії, що вивчатиметься у старших класах. Разом із цим, у порівнянні з попередніми підручниками, з'являються нові дидактичні акценти, пов'язані зі специфікою «геометрії методів», розширюються і поглиблюються окремі питання щодо властивостей геометричних фігур, методики розв'язування задач тощо.

Структура, обсяг і співвідносність розділів навчального матеріалу повністю відповідають діючій програмі. Однак порівняно з традиційними підходами до розгляду відповідного навчального матеріалу запропоновано декілька важливих інновацій. Це дає можливість спростити низку доведень. Найбільш складні з точки зору обґрунтування теореми супроводжуються в основному тексті зрозумілими для пересічного учня загальними схемами міркувань, а відповідні строгі доведення подаються в «Додатках».

У тексті виділено основний зміст (означення, теореми й наслідки з них), доповнення та приклади розв'язування задач. До кожної теореми подано її назву. Наприкінці розділу міститься підсумковий огляд його змісту у вигляді таблиці, які наочно ілюструють змістовно-логічні та структурно-функціональні зв'язки між елементами навчального матеріалу.

Крім того, наприкінці розділу пропонуються контрольні запитання і типові задачі для підготовки до контрольної роботи. Наявність цих матеріалів дає змогу учневі самостійно оцінити рівень своєї математичної підготовки; запитання і задачі мають діагностичну цінність і сприяють корекції знань. Додаткові задачі до розділу призначені для організації інтегрованого повторення і узагальнення вивченої теми, встановлення внутрішніх взаємозв'язків між окремими фрагментами теми. Окремо після розділу виділено задачі підвищеної складності. Така організація матеріалу дає змогу забезпечити опанування учнем програмового змісту як під керівництвом учителя, так і самостійно.

Теоретичний матеріал побудовано за схемою «означення основних понять – аксіоми й теореми – наслідки – приклади застосування». Окреме місце відводиться опорним задачам, які містять додаткові теоретичні відомості, на які учні далі можуть посилатися без доведення. Такі задачі подаються як в основному тексті параграфів, так і в задачному матеріалі. Задачі до кожного параграфа розподілено на чотири групи. Першу групу складають усні вправи – завдання теоретичного плану, розгляд яких є проміжним етапом між вивченням теорії і розв'язуванням письмових задач. Наявність таких задач дає змогу використовувати на уроці інтерактивні форми роботи. Друга група завдань – графічні вправи, які учні можуть виконувати як власноруч у зошиті, так і за допомогою комп'ютера. Ці вправи дають наочне уявлення про базові геометричні конфігурації, що вивчаються, сприяють розвитку початкових креслярських умінь і навичок роботи з графічними комп'ютерними програмами. Наступну групу складають письмові задачі, згруповані за трьома рівнями складності. Зазначимо, що на кожному рівні завдання диференційовано за змістом навчальної діяльності – задачі на обчислення, доведення, побудову тощо. Нарешті, наприкінці кожного параграфа виділено теоретичний матеріал, який необхідно повторити для свідомого засвоєння наступної теми, і подано задачі для повторення.

Розв'язувати всі задачі розділу не обов'язково (а з урахуванням наявного навчального часу і неможливо). Задачі до кожної теми свідомо подано в надлишковій кількості, щоб розширити творчі можливості вчителя, сприяти організації особистісно-орієнтованого навчання, диференціації роботи учнів у класі та вдома з урахуванням їхніх індивідуальних можливостей і рівня математичної підготовки.

До теми «Взаємне розташування прямих у просторі» у трьох підручниках докладно подано основні фігури в просторі, позначення і зображення площин, розміщення точок у просторі. У підучниках Мерзляка і Єршова чітко виділені твердження, як однозначно задати площину. Також тут подані графічні зображення взаємного розміщення двох прямих у просторі, у підручнику Бурди лише продемонстровано на прикладі кімнати.

Страницы: 1 2 3



Загальна характеристика типу професій "людина — знакова система"
Всередині групи професій "людина — знакова система" психологи виділяють окремі класи спеціальностей. В основу класифікації покладено таку ознаку, як специфіка мети праці. За нею виділяють т ...

Спільна виховна робота школи, сім’ї і громадськості в початковій школі
Сім'я є природним середовищем первинної соціалізації дитини, джерелом її матеріальної та емоційної підтримки, засобом збереження і передання культурних цінностей від покоління до покоління. З появою ...

Читання як вид навчальної діяльності

Громадянська освіта

Читання - основний засіб навчання, інструмент пізнання навколишнього світу. >>>

Copyright © 2018 - All Rights Reserved - www.pedahohikam.net