Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу

Педагогіка: історія і сьогодення » Вивчення елементів стереометрії у курсі геометрії 9 класу » Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу

Сторінка 10

Навички будувати зображення геометричних тіл відпрацьовуються під час подальшого ознайомлення учнів з многогранниками та тілами обертання.

Вивчаючи систематичний курс планіметрії, з метою пропедевтики стереометричних знань велику увагу слід приділити задачам на обчислення лінійних елементів геометричних тіл, які є елементами плоских фігур, за даними розмірами інших елементів і мір кутів цих тіл, а також задачам на встановлення залежності між лінійними елементами та площами плоских фігур, поверхнями та об'ємами геометричних тіл. Учні вчаться знаходити на зображеннях геометричних тіл плоскі фігури та, використовуючи відомості з планіметрії, обчислювати необхідні величини.

Така ілюстрація тверджень планіметрії на геометричних тілах, по-перше, розширює знання учнів про ці тіла, по-друге, значно полегшує засвоєння учнями відповідного планіметричного матеріалу, по-третє, досить сприятливо відбивається на розвитку просторових уявлень учнів, дає змогу здійснювати «вихід» за межі площини. Оскільки формування обчислювальних навичок і вмінь на даному етапі навчання вже не є його основною метою, то там, де це необхідно, рекомендуємо користуватися калькулятором.

Наведемо приклади таких задач.

У трикутній піраміді РАВС АРС=ВРС, АСР=ВСР. Скільки рівнобедрених трикутників серед її граней?

У трикутній піраміді PАВС РВА=90°, РВС=90°. Нехай BA=ВС. Доведіть, що РА=РС.

Основою піраміди PABC є рівнобедрений трикутник АВС (АB=ВС). ЇЇ бічні ребра рівні. Нехай MN – середня лінія основи, паралельна АС. Доведіть рівність трикутників РВМ і РВN.

Дано зображення куба. Сполучіть деякі його вершини так, щоб одержати рівносторонній трикутник.

Довжина ребра куба дорівнює 10 см (рис. 26). Обчисліть довжину діагоналі куба.

Рис. 26

32. У прямокутному паралелепіпеді ABCDA1BlClDl АВ=5 дм, DD1=2 дм, B1C1=1 дм. Знайдіть B1D.

33. Основою прямої призми ABCDA1BlClDl є паралелограм ABCD зі сторонами 4 см і 8 см, кут BAD дорівнює 60°. Знайдіть діагоналі призми, якщо її висота 6 см.

Знайдіть діагональ прямокутного паралелепіпеда, висота якого дорівнює 12, а сторони основи 8 і 6.

Знайдіть діагональ прямокутного паралелепіпеда, сторони основи якого дорівнюють 3 дм і 4 дм, якщо вона утворює з діагоналлю основи кут 60°.

За даними стороною основи а=9 см і бічним ребром b=6 см знайдіть висоту піраміди, основою якої є квадрат. Основа висоти піраміди збігається з центром квадрата.

Основою піраміди є рівносторонній трикутник зі стороною 6 м. Бічні ребра піраміди рівні й утворюють зі сторонами основи кути по 45°. Знайдіть висоту піраміди.

Основою піраміди SABCD є прямокутник ABCD. O – точка перетину його діагоналей; SO – висота піраміди. Обчисліть довжину бічного ребра піраміди, якщо довжина діагоналі дорівнює 14 см, а кут між діагоналлю основи та бічним ребром дорівнює 60°.

Страницы: 5 6 7 8 9 10 11 12



Профільна загальноосвітня підготовка в системі початкової та середньої професійної освіти
Необхідність одночасного засвоєння учнями установ початкової та середньої професійної освіти навчального матеріалу, обумовленого двома стандартами (загальної середньої та професійної освіти), призвед ...

Стан дослідженості гендера як соціокультурної характеристики особистості
У контексті завдань нашої роботи необхідно проаналізувати наукові погляди на співвідношення понять "стать”, "гендер”, "соціалізація” та їхньої взаємодії у процесі онтогенетичного розви ...

Читання як вид навчальної діяльності

Громадянська освіта

Читання - основний засіб навчання, інструмент пізнання навколишнього світу. >>>

Copyright © 2019 - All Rights Reserved - www.pedahohikam.net