Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу

Педагогіка: історія і сьогодення » Вивчення елементів стереометрії у курсі геометрії 9 класу » Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу

Сторінка 3

Розгляд можливих випадків перетину двох площин приводить до уявлення про перпендикулярні площини. Нехай дві площини та перетинаються по прямій . Якщо деяка площина перпендикулярна до прямої і перетинає площини та по перпендикулярних прямих, то площини та називають перпендикулярними. Це записують так:

або .

Далі слід дати означення перпендикулярних площин і сформулювати ознаку, яка доводиться в систематичному курсі стереометрії. Таке пояснення необхідно також супроводжувати показом моделей. Якщо косинець прикласти до двох площин, що перетинаються так, що його катети будуть перпендикулярні до лінії їх перетину, то ми матимемо уявлення про перпендикулярні площини. Перпендикулярність площин на практиці можна перевірити за допомогою виска (шнура з тягарцем). Так, наприклад, перевіряють вертикальність стін будівлі.

Важливо, щоб учні могли показувати приклади взаємного розміщення прямих і площин у просторі на моделях відомих їм геометричних тіл, на предметах навколишнього середовища.

За дослідженнями психологів, середній шкільний вік є найбільш сензитивним для засвоєння методу проектування. Враховуючи це в практиці навчання, необхідно вже в курсі планіметрії ознайомити учнів з виконанням зображень геометричних тіл. У зв'язку з цим як спосіб зображення просторових фігур доцільно розглянути паралельне проектування, а саме конструкцію паралельного проектування точки та фігури на площину, сформулювати властивості паралельної проекції.

Під час вивчення розділу «Елементи стереометрії» відомості про многогранники, які учні одержали раніше, необхідно узагальнити й систематизувати. А саме: на основі попереднього досвіду учнів потрібно дати загальне поняття многогранника, його граней, ребер, вершин. Доцільно сформулювати таке означення.

Многогранник – це геометричне тіло, поверхня якого складається із скінченної кількості плоских многокутників.

Многокутники, які обмежують многогранник, називають його гранями, їх сторони – ребрами, а вершини – вершинами многогранника.

При цьому вчителю слід продемонструвати різні моделі многогранників. Учні повинні вміти показувати їх грані, ребра, вершини.

Корисно нагадати учням, що з найпростішими з многогранників – призмами і пірамідами – вони зустрічалися раніше і вже ознайомлені з їх елементами та деякими властивостями.

Перший вид многогранників, який слід розглянути, – призми. Відомості, одержані про призму раніше, варто пригадати, повторити. Зокрема, призму учні мають розпізнавати як многогранник, у якого дві грані – довільні рівні многокутники з відповідно паралельними сторонами, а решта граней – паралелограми. Рівні многокутники називають основами призми, а паралелограми – бічними гранями.

Страницы: 1 2 3 4 5 6 7 8



Педагогічні рекомендації корекційним педагогам щодо використання елементів музикотерапії та психогімнастики під час проведення рухливих ігор
Корекційна робота на заняттях з фізичного виховання набуває дієвого характеру, якщо вміло поєднувати елементи музико терапії і психогімнастики коли перед дітьми ставляться завдання які сприяють актив ...

З історії становлення естетичного виховання та його традиції на Україні
Естетика – наука про становлення чуттєвої культури людини. Таке загальне визначення витікає з органічної єдності двох своєрідних частин цієї науки; якими є: 1) виявлення діалектики самого процесу осв ...

Читання як вид навчальної діяльності

Громадянська освіта

Читання - основний засіб навчання, інструмент пізнання навколишнього світу. >>>

Copyright © 2018 - All Rights Reserved - www.pedahohikam.net